

ROB OLLIS

NAME

NUMBER PLANES

Edition 1

www.MasterCoachingAustralia.com

Number Plane

Number plane is geometry, with visual properties made clear by accurate graphs.

The *x* axis should be drawn on a line of the page.

The scale along the *y* axis should also fall on the lines of the page.

These two ideas are essential to drawing accurate graphs for most students.

The scale along the *x* axis could be marked in centimetres.

If the same scale is required on both axes, tear a small strip of paper from the side of the page, rotate it through 90 degrees, and use the line markings to set the scale along the x axis at line widths.

Plotting points : a 'point' is a *location* on a plane, indicated by a capital letter.

The point P which is x units sideways and has a height of y has its location written as P(x, y)

eg Q(3,7) indicates that Q is 3 units to the *positive righthand* side of the vertical y axis and then the positive height of 7 units is above the horizontal x axis

ie (x, y) means (sideways, height)

We must be able to find the <u>length</u>, <u>slope</u> and <u>midpoint</u> of a line joining *two points*. The <u>equation</u> of the line is not as obvious from the diagram ... see page 4.

Two points ... consider A(4,3) and B(-4,-2) shown plotted on the number plane below :

In the diagram above, I have labeled a point T. Check that its coordinates are T(4,-2)You can see that you have a right-angled triangle ABT, good for Pythagoras. You need to understand how to get the horizontal length BT and the vertical length AT. BT is the distance when you go from 4 units to the left of the origin to 4 units on the right. You can think 'BT=4+4=8' or you can think 'BT = 4 - (-4) = 4 + 4 = 8'

AT is the distance when you go from 2 units 'below ground' to 3 units 'above ground'. You can think 'AT=2+3=5' or you can think 'AT = 3 - (-2) = 3 + 2 = 5'

Length, slope and midpoint depend upon getting these two lengths correct.

Number Plane ... Exercise Set 1 ... <u>Two-Point Measurements</u>

Answers

1 a
$$AB = \sqrt{5^2 + 6^2} = \sqrt{61}$$

b $m_{AB} = \frac{5}{6}$
c $6y = 5x + 8$
d $M_{AB} = (-1, \frac{1}{2})$
e $y = 1\frac{1}{3}$ f $\theta = \tan^{-1}(\frac{5}{6}) = 39 \cdot 8^{\circ}$
e $y = 1\frac{1}{3}$ f $\theta = \tan^{-1}(\frac{5}{6}) = 39 \cdot 8^{\circ}$
e $y = 2\frac{1}{8}$ f $\theta = \tan^{-1}(\frac{3}{8}) = 20 \cdot 6^{\circ}$
3 a $AB = \sqrt{5^2 + 6^2} = \sqrt{61}$
b $m_{AB} = \frac{-5}{6}$
c $6y = -5x + 16$
d $M_{AB} = (-1, 3\frac{1}{2})$
rise
e $y = 2\frac{2}{3}$ f $\theta = 140 \cdot 2^{\circ}$
5 a $AB = \sqrt{3^2 + 4^2} = 5$
b $m_{AB} = \frac{-3}{4}$
c $4y = -3x + 19$
d $M_{AB} = (3, 2\frac{1}{2})$
e $y = 4\frac{3}{4}$ f $\theta = 143 \cdot 1^{\circ}$
7 a $AB = \sqrt{4^2 + 6^2} = \sqrt{52}$
b $m_{AB} = \frac{4}{6} = \frac{2}{3}$
c $3y = 2x - 11$
d $M_{AB} = (4, -1)$
 $\frac{\theta}{\theta} = \frac{6}{10}$
run
e $y = -3\frac{2}{3}$ f $\theta = 33 \cdot 7^{\circ}$
5 a $AB = \sqrt{4^2 + 6^2} = \sqrt{52}$
b $m_{AB} = \frac{4}{6} = \frac{2}{3}$
c $3y = 2x - 11$
d $M_{AB} = (4, -1)$
 $\frac{\theta}{\theta} = \frac{6}{10}$
run
e $y = -3\frac{2}{3}$ f $\theta = 33 \cdot 7^{\circ}$
5 a $AB = \sqrt{4^2 + 6^2} = \sqrt{52}$
b $m_{AB} = \frac{-14}{4}$
c $4y = -x + 11$
rise
d $M_{AB} = (12 \cdot 5)$
e $y = 2\frac{2}{4}$ f $\theta = 166 \cdot 0^{\circ}$

1 Point and Gradient ... find the equation of the line through :

- **a** A(7,3) with gradient 4
- **c** C(4,17) with m = 3
- e E(6,-15) with gradient $-\frac{2}{3}$
- **b** B(8,-9) with gradient 10 **d** D(100,-3) with gradient -5**f** F(-46,32) with $m = -\frac{1}{2}$

2 Parallel ... find the equation of the line through :

- **a** A(2,9) parallel to 4x 3y + 11 = 0
- **c** C(-2,7) // 10y 3x 6 = 0
- **b** B(4,-2) // y = 3x 978**d** D(8,-3) parallel to $3y + 5x = \pi$ **f** F(5,-2) // 5x = 7y + 43
- **e** E(12,0) parallel to 6x + 55y + 1 = 0**3 Mixed** ...find the equation of the line through :
- **a** A(8,5) with gradient 3 **b** B(12,-5) with gradient -2**c** (-3,5) and (2,35)**d** D(21,-28) and W(24,2) **f** F(8,999) parallel to y = 101x - 2**e** E(9,2) parallel to 3x - 10y + 1 = 0**h** H(8,-3) perpendicular to y = 7x + 43**g** G(-4,5) perp. to 3x - 10y + 77 = 0i I(11,0) // to 7y + 4x = 50 $J(6,-7) \perp 9y - 4x - 21 = 0$ **k** K(0,77) parallel to 33x - 2y + 56 = 0L(5,-9) parallel to y = 7x - 333**m** M(4,-5) perp. to x - y + 1 = 0**n** N(-1,-2) perpendicular to y = 3x + 4**o** (99,1) // to 3x + 5y + 99 = 0**p** $P(3,9) \perp 5y + 7x - 8 = 0$ **q** Q(10,41) parallel to 13x - 3y + 71 = 0**r** R(30,-21) parallel to y = 4x + 1109Answers:

	Point and Gradie			2 parallel					
а	y = 4x - 25	b	y = 10x - 89	а	4x - 3y + 19 = 0	b	<i>y</i> =	3x - 14	
С	y = 3x + 5	d	y = -5x + 497	С	10y - 3x - 76 = 0	d	3у н	-5x = 31	
е	$y = -\frac{2}{3}x - 11$	f	$y = -\frac{1}{2}x + 9$	е	6x + 55y - 72 = 0	f	5 <i>x</i>	=7y + 39	
3 Mixed									
а	y = 3x - 19	b	y = -2x + 19	С	y = 6x + 23				
d	y = 10x - 238	е	3x - 10y - 7 = 0	f	y = 101x + 191				
g	10x + 3y + 25 = 0	h	7y = -x - 13	i	7y + 4x = 44				
j	4y + 9x - 26 = 0	k	33x - 2y + 154 = 0	Ι	y = 7x - 44				
m	x + y + 1 = 0	n	3y = -x - 7	0	3x + 5y - 302 = 0				
р	$7y - \frac{5x - 48}{4} = 0$	q	13x - 3y - 7 = 0	r	y = 4x - 141				